JabberChess, A Mobile Chess App Speech Recognizer for Visual and Motion Impaired Users

Jackson Chen

Words: 2839

Abstract

As the mobile application marketplace has proliferated within the past few years, so has
our reliance on them to perform basic day to day activities, such as GPS navigation. However,
this is not the case for visually or motion impaired users, as the market for apps accessible to
disabled users is fairly unsaturated. In this project, I focus on a specific category of apps that I
am familiar with: chess. From my research, chess apps lack accessibility to the visual and motion
impaired due to the lack of an accurate and affordable speech recognizer. This leads to the
research question: Could a mobile chess application be developed to overcome voice recognition
inaccuracy and costly price? This project introduces JabberChess, a speech recognizer that is
both suitable and economical for mobile chess apps. It is affordable because it is built on a
leading, free speech recognition toolkit. Despite using a state of the art speech recognition
toolkit, the toolkit’s default recognizer is virtually unusable for chess apps due to its extremely
poor word recognition accuracy for chess vocabulary. In order to improve the accuracy, this
project trains a new language model and a new grammar model specifically suitable for chess
vocabulary and other chess related commands that are used in the new recognizer. Equipped with
the newly trained grammar model and the language model, the new recognizer introduced by this
project shows a significant improvement in performance in average word accuracy and sentence
accuracy. The result of this project can hopefully open a new era of mobile app development:
one aimed to include those with visual or motion disabilities.

1. Introduction

Automated speech recognition (ASR) technology has improved dramatically over the past

decade, which has lead to a boom in speech-activated applications, especially in the mobile

market. This boom has been supported by both the business and the research community: large
technology companies have been developing voice-activated personal assistants, such as Siri,
Google Now, and Cortana, while researchers have been investigating the many applications of
ASR, such as educational applications for visually impaired students [1]. In fact, many
applications focus on improving the mobile experience for visually and motion-impaired users
[2]. Despite this, the blind-accessible mobile gaming market is largely unsaturated. For example,
there are no speech-activated mobile chess apps available on either the 10S or Android
platforms. Searching extensively online for such a mobile chess app returns one app on i0OS
called Blind Chess Trainer. It is self-proclaimed as “fully accessible to blind users”, yet it does
not use ASR and could only read chess moves to the user [3].

This project aims to create a speech recognizer that is not only accurate in recognizing
words and phrases but also affordable. A recognizer that fits these two criteria can be used in a
mobile app which can be widely distributed throughout the mobile application ecosystem.
Current available commercial ASR products do not satisfy these two requirements. For example,
the leading commercial ASR system is owned by Nuance. Their ASR recognizer is cloud based
and provides convenient software developer APIs on all major mobile platforms. They claim that
their ASR recognizer “delivers the industry’s highest recognition accuracy” [4]. However, it
would cost more than $8 a day for a regular user (calculated based on the user playing 10 games
a day) [5], while users are typically accustomed to free mobile apps [6]. On the other hand, CMU
Sphinx, a state-of-art open source speech recognition toolkit [7], provides a free, trained decoder
with very low recognition accuracy for chess notation and commands. This leads to the research

question: How accurate is an ASR decoder trained with a special language model and a special

grammar model for chess vocabulary compared with the default decoder provided by CMU
Sphinx?

A decoder trained with a language model or a grammar model should be much more
accurate than free decoders, and much cheaper than commercial solutions. A speech driven chess
app would improve the user mobile experience for visual or motion impaired users, as well as
benefit the chess community with an influx of new players. Furthermore, this work can promote

other game developers to create games that can be enjoyed by disabled users.

2. Methods

2.1 Speech Recognition Decoder Architecture

CMU Sphinx-4 is a pure Java speech recognition library that this project will use to build the
recognizer as shown in Figure 1. Firstly, the feature extraction module extracts feature vectors,
39 numbers that represent the speech signal. Then, the decoder decodes these feature vectors into
words with the help of the modules in the knowledge base. The acoustic model is aware of the
properties of atomic acoustic units, also called “senones” [8]. The dictionary consists of
mappings from words to phones. The language model is an n-gram model (in the ARPA format),
which contains the statistics of word sequences. The language model is used to restrict word
search in the Hidden Markov Models (HMM) sequential process. Grammars contain the JSpeech
Grammar Format (JSGF) textual representation of grammars used to determine what the decoder
should listen for, and thus describe the utterances a user may say. Together these modules help

the decoder find the best text output (called hypotheses).

speech
knowledge base

feature extraction acoustic model

feature vectors l
dictionary

decoder

| language

“_-_‘-‘_'_"“‘-—-._.
model
waords

grammmar
model

App

(post-processing)

Figure 1: CMU Sphinx ASR pluggable architecture
CMU Sphinx-4 provides state-of-art acoustic modeling using mel-frequency cepstrum (MFCC),
and consists of features with noise tracking and spectral subtraction for noise reduction. More
importantly, however, Sphinx-4 has a flexible architecture, allowing for the replacement of its
default models with customized ones that I built. The latest CMU acoustic model, “generic US
English acoustic model v5.2”, is used as the experimental control. As shown in Figure 1, I
trained my own language model, dictionary, and grammar model to replace the default ones (see
the green modules in knowledge base). With Sphinx, one can only use either a language model

or a grammar model, but not both.

2.2 Speech Recognition Modeling for Chess
2.2.1 Chess Notation and Language for Mobile Apps
Algebraic notation [9] is the most popular notation used to record and describe the moves in a
game of chess, where every square on the chessboard is identified with a unique letter and
number pair. The vertical coordinates are called files and labeled a through h, from white's left to
white's right. Similarly, the horizontal coordinates are called ranks and are numbered from 1 to
8, starting from white's home rank. Each square of the board, then, is uniquely identified by its
file letter and its rank number as shown in Figure 2. Algebraic notation is the standard in chess
computer and mobile applications, thus the chess app users will speak commands using algebraic
notation. Therefore, the speech recognition detector needs to recognize algebraic notation. Even
though there are a total of 8 numbers (1 through 8) and 8 letters (a through h), there are
thousands of combinations when linked other chess vocabulary (e.g capture, promotion, check,
etc.). One move consists of full a turn by each player (white and black). A ply is a half-move.
For example, white moved his pawn to e4:
l.e4

Then, black moved his pawn to c5:

I...¢c5
One chess “move” was just completed because white and black completed their turns. The
complete move can be shortened to the following:

1.e4 c5

Figure 2: Chessboard and its coordinates used in chess algebraic notations

2.2.2 Chess Language Model
Since the chess language has a small set of vocabulary and a large set of word combinations, the
generic English model poorly recognizes chess terminology. Thus, the language model created in
this project needs to be trained with chess terms and sentences. To do so, a list of all possible
chess commands is needed, for instance:

Ral, Ral+, Ral#, Rxal,
The above algebraic notation needs to be translated into speech recognizable format for the
training program to understand:

Rook a one, Rook a one check, Rook a one checkmate, Rook captures al,

Since there are 27,043 possible combinations, I wrote a program to output all possible sentences.
The output of the program is a corpus file containing all 27K chess commands. I then used the
CMU Lmtool [10], a statistical language modeler, to train the chess language model. The
training program not only outputted the new ARPA formatted language model, but also provided

the dictionary. I used the newly trained dictionary and the newly trained language model together

in the decoder as shown in Figure 3.

speech l
knowledge base
feature extraction
acoustic model
feature vectors 1

/
‘K

decoder dictionary
words l I
language
maodel
App

(post-processing)

Figure 3: Decoder with newly trained language model and dictionary

2.2.3 Chess Grammar Model

An alternate way to restrict the HMM finite state search is to provide a chess grammar model.

The grammar model is configured throw a JSGF [11] grammar file where possible grammatical

patterns of chess commands are specified. For example, the following line of code states that the
user’s chess command can be either menu_command or move_command:

public <command> = <menu_command> | <move command>;
where a move_command can be “queen [<capture>] <col> <row> [<ck>] ”, which means “Qc4”,

“Qxc4” or “Qxc4+”, etc. Appendix A provides the details of the grammar model file.

speech
knowledge base
feature extraction acoustic model
[~
feature vectors l
dictionary
‘—'—.’-'_'_._'—"-'d_,_-—'—'_
decoder
words \
E"'“'-..
grammar
model

App

(post-processing)

Figure 4: Decoder with the new chess grammar model

3. Results

3.1 Test Methods And Data Preparation
Due to the lack of a ready to use test chess corpus, I used chess online audio materials [12] and

live recordings of people’s voices to create the WAV files. Each WAYV file contains one chess

game. A transcript from the chess moves in each chess game is created, and then each WAV file
is fed to the decoder in order to obtain the hypothesis (to a file).

Figure 5 shows the project’s first decoded chess game. Each line (sentence) is one chess
ply (command), e.g. “Nf3” or “knight f three”. The recognized hypothesis is then compared
against the original transcript using the NIST alignment and scoring algorithm [13], which
employs a word error rate (WER) and accuracy rate to measure the ASR recognition
performance. I used the CMU NISTAlign package, which is an implementation of the NIST
algorithm. The package can only compare one pair of strings (in my case, one sentence) at a

time. It will then aggregate the final statistics in the end.

original transcript recognized hypothesis
ed e four
ch c five
N3 e knight f three
dé d 5ix
d4 d faur
cxd4 c take d four
Mxdd knight take d four

Figure 5: Sample test transcript and hypothesis
For each test audio (a chess game), I constructed two lists of strings, one for the original
transcript and the other for the hypothesis. Each item on the list corresponds to one ply in the
original order in the game. One issue with this input approach is when there is a mismatched line
between the original transcript and hypothesis, all of the lines after the mismatched line will be

compared incorrectly, as shown in Fig 5. In this case, I must replace the mismatched line with a

10

text string (“yyyyyy”) to ensure that there is an erroneous line in original transcript. This way,

NISTALIign can count this line as incorrect and continue to compare the following lines.

ariginal transcript recognized hypothesis input for MISTAlIgR
ed 2 ;ﬁ.;r e four
2 ~ knightf _ cfive
d6 e d six
d4 i four d four
N ¢ s d four (right take fou
knight take d four

Figure 6: Replacing a mismatched line for NISTAlign comparison

I also performed a simple test on Nuance’s speech recognizer using Nuance’s sample
recognizer app on the Android platform. I took one of my test scripts and dictated it using the
sample recognizer app to analyze its result. However, no statistical tests were performed on this
data due to the lack of quantity of data.

3.2 Data Analysis And Results
Following criteria are used in my analysis:
WER=(I+D+S)/N

where N is the number of words in the original transcript text. / words were inserted, D words
were deleted and S words were substituted. Accuracy is nearly equivalent with WER, but does
not count insertions:

Accuracy=(N-D-S)/N
I also measured recognition speed for each test case. Suppose the audio file was 2 minutes long

and the decoding took 6 minutes. Then speed is counted as 3*RT.

11

Figure 7 shows the word accuracy for the decoder using various models. Both my grammar

model and my chess language model improved the word accuracy dramatically. The average

accuracy for language model is 87% and grammar model 86%, in contrast with the 15% from the

default model of the CMU Sphinx-4 as shown in Table 1. The difference between the newly

trained language model and the grammar model is very small. Fig. 8 shows the sentence

accuracy between the 3 models. The patterns are very similar to that of word accuracy. The

average sentence accuracy is 68% for the language model and 66% for the grammar model.

Word Accuracy for Various Models

— Grammar
Model
— | anguage
o 0.75 Maodel
£ Default
§ Nuance
5 D5 * Trendline
< for Line 4
$
0.25
0
5 10 15 20 25
Game Number
Figure 7: Word accuracy graph for various models
Grammar Model Language Model Default Model
Average 0.859 0.871 0.150
Standard Deviation 0.0709 0.0736 0.0841

Table 1: Average and standard deviation for word accuracy

Figure 9 shows the decoder recognition times between models. The grammar model is twice as

fast as the language model while the language model is 10 times faster than the default model.

12

Fig.7 and 8 also shows that Nuance’s speech recognizer is below my language and grammar

models in accuracy but better than the default model.

Sentence Accuracy for Various Models

F 075

oy

§

]

2 05

]

1~

QD

"5 .
& 0.25

D e —

15 20

Game Number

— Grammar
Model

— Language
Model
Default
MNuance

Trendline
for Line 4

25

Figure 8: Sentence accuracy graph for the various models

Grammar Model

Language Model

Default Model

Average

0.664

0.686

0.00841

Standard Deviation

0.137

0.126

0.0106

Table 2: Average and standard deviation for sentence accuracy

In addition, the One-Way Analysis of Variance (ANOVA) test was performed on the two

datasets. The F_,, was 757.9 and 333.6 for word accuracy and sentence accuracy, respectively;

these values were both greater than the F

values, meaning that the null hypothesis can be

rejected and it can be concluded that there was a significant difference between the accuracies.

Furthermore, the Tukey-Kramer test was performed on pairs of models for each dataset, and it

was found that for both word and sentence accuracies, the grammar model and language model

13

were not significantly different from each other, but both were significantly different from the

default model.
Time to Process vs Words for Different Models
300 @ Grammar
Madel
Trendline
. 225 for Data
Ll series 1
175
o @ Language
g Madel
E 150 ode
o Trendline
E for Data...
= Default
75 Madel
Sib Trendline
i
: I . l " o000 for Data...
0 125 250 375 500
Words
Figure 9: Decoder processing time graph for the various models
Grammar Model Language Model Default Model Words
Average 5.162692308 13.73307692 131.3457692 207.4615385
Standard Deviation 2.629695888 7.846439075 75.54561272

Table 3: Average and standard deviation for processing times

4. Future Work

This essay presents a developed prototype of a speech activated mobile chess app on the 10S

platform. It uses Stockfish [14], an open source mobile chess app, as the base app. Due to time

constraints, this prototype has not been integrated with the newly trained speech recognizer as

described above. However, the Speech Controller and Speech-to-Command Controller are built

as shown in Fig. 10. The Speech Controller records the user’s speech, saves it to a WAV file and

14

will send it to the app’s speech recognizer once it is integrated. The speech recognizer will use
the trained decoder to obtain the corresponding hypothesis and will return it to the Speech
Controller. Then, the speech controller will send an event to the Speech-to-Command Controller
via the 10S default event center. The Speech-to-Command Controller performs hypothesis
post-processing and validation using the current game and chessboard position. It translates the
user’s speech into a chess game command and sends it to the Stockfish Game Controller to
execute. The post-processing will, to some extent, compensate for some of the speech
recognizer’s mistakes since the Speech-to-Command controller may figure out the user’s true
intentions by using the context of the game. The end user will be able to play chess without
visually looking at the chessboard and in a completely hands-free manner. Even though all
components are based on open source software, the quality is still very high. In fact, Stockfish
has been on the mobile market for years and has consistently been one of the strongest chess

engines [15].

5. Conclusion

In this project, I introduced a low cost, high accuracy chess speech recognizer that can be used to
build the first mobile chess app for visual impaired users. It is based on CMU Sphinx-4 speech
recognition libraries. My results show that the new grammar model and language model both
have much better accuracy compared with the default CMU Sphinx-4 model and possibly
Nuance’s speech recognizer. Also, the difference between the two new models is very small.
However, the processing speed of the grammar model is much faster than the language model.

Therefore, I recommend to use the grammar model in future mobile chess applications. For the

15

future, more testing data needs to be generated, especially for the Nuance commercial model.
That way I can fully compare the quality of my open sourced models against the leading
commercial models. In addition, a full implementation of the mobile chess application for the
visual and motion impaired needs to be completed and testing to see its full impact. Overall,
JabberChess is an answer to the research question by providing a cheaper solution and a much
more accurate speech recognition engine; however, more testing and fine-tuning is needed for

such an app to be ready to be released to the market.

visual
action Stockfish Chess App

™

speech command
User Interface

Speech Controller

WaAY
hypothesis Game
Controller
Chess Speech
Recognizer
()
event
L

Speech-to-

Event Queue & Command
event Controller

Figure 10: Speech activated iOS chess app

16

Appendix A: Grammar Model Configuration

A copy of my chess speech recognition grammar model file is on the following page.

17

<row>= one |
two |
three |
four |
five |
six |
seven |
eight ;

<col>=a |
[
|
|
|

JTGQo o a0 o

<promote> = queen |
rook |
knight |
bishop ;

<pair> = rook |
knight |
bishop ;

<ck> = check | checkmate;
<eat> = captures | takes | capture | take;

<menu_command> = resign |
[please] show [board] position |
new game I
exit [[the] program] ;

<move_command> = queen [<eat>] <col> <row> [<ck>]
king [<eat>] <col> <row> |
castle | castle king side | castle queen side |
<pair> [<col>l<row>] [<eat>] <col> <row> [<ck>]l
[pawn] [<eat>] <col> <row> [<promote>] [<ck>] ;

public <command> = <menu_command> | <move_command>;

18

6. References

[1] Luci¢, B., Ostrogonac, S., Vujnovi¢ Sedlar, N., & Secujski, M. (2015). Educational
Applications for Blind and Partially Sighted Pupils Based on Speech Technologies for Serbian.
The Scientific World Journal, 2015, 839252. http://doi.org/10.1155/2015/839252.

[2] Zhong Y., Raman T., Burkhardt C., Biadsy F., & Bigham J (2014). JustSpeak: enabling
universal voice control on Android. In Proceedings of the 11th Web for All Conference (W4A
'14). ACM, New York, NY, USA, , Article 36 , 4 pages. DOI=10.1145/2596695.2596720
http://doi.acm.org/10.1145/2596695.2596720

[3] The self-proclaimed “fully accessible chess app” that does not use ASR is called “Blind
Chess Trainer” by Marcel Nijman. http://wise-games.com/en/Chess.html

[4] Nuance’s promotional website:
http://www.nuance.com/for-business/automatic-speech-recognition/automated-ivr/index.htm

[5] Nuance’s Plan and Pricing:
http://dragonmobile.nuancemobiledeveloper.com/public/index.php?task=memberServices

[6] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong, and Norman Sadeh. 2013. Why
people hate your app: making sense of user feedback in a mobile app store. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD
'13), Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh
Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy (Eds.). ACM, New York,
NY, USA, 1276-1284. DOI=10.1145/2487575.2488202
http://doi.acm.org/10.1145/2487575.2488202

[71 CMU Sphinx project homepage: http://cmusphinx.sourceforge.net/wiki/sphinx4:webhome

[8] An overview on the senones module
http://www.cs.cmu.edu/~tanja/Lectures/JRTkDoc/OldDoc/senones/sn_main.html

[9] Wikipedia page describing Chess Algebraic Notation:
https://en.wikibooks.org/wiki/Chess/Algebraic_notation

[10] CMU Sphinx tool: http://www.speech.cs.cmu.edu/tools/Imtool-new.html

[11] W3 description of the JSpeech Grammar Format: http:/www.w3.org/TR/jsgf/

[12] Joe Gallagher (Speaker). (2007). CD Starting Out: The King's Indian. Everyman Chess.

19

http://doi.org/10.1155/2015/839252
http://doi.acm.org/10.1145/2596695.2596720
http://doi.acm.org/10.1145/2596695.2596720
http://wise-games.com/en/Chess.html
http://www.nuance.com/for-business/automatic-speech-recognition/automated-ivr/index.htm
http://dragonmobile.nuancemobiledeveloper.com/public/index.php?task=memberServices
http://doi.acm.org/10.1145/2487575.2488202
http://dragonmobile.nuancemobiledeveloper.com/public/index.php?task=memberServices
http://cmusphinx.sourceforge.net/wiki/sphinx4:webhome
http://cmusphinx.sourceforge.net/wiki/sphinx4:webhome
http://www.cs.cmu.edu/~tanja/Lectures/JRTkDoc/OldDoc/senones/sn_main.html
http://cmusphinx.sourceforge.net/wiki/sphinx4:webhome
https://en.wikibooks.org/wiki/Chess/Algebraic_notation
https://en.wikibooks.org/wiki/Chess/Algebraic_notation
https://en.wikibooks.org/wiki/Chess/Algebraic_notation
http://www.speech.cs.cmu.edu/tools/lmtool-new.html
http://www.speech.cs.cmu.edu/tools/lmtool-new.html
http://www.w3.org/TR/jsgf/
http://www.w3.org/TR/jsgf/

[13] Description of the NIST Algorithm:
http://www 1 .icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

[14] The official Stockfish app website: https://stockfishchess.org/

[15] List of strongest chess computing engines: http://www.computerchess.org.uk/ccrl/404/

20

http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
https://stockfishchess.org/
https://stockfishchess.org/
http://www.computerchess.org.uk/ccrl/404/

