Pocketsphinx Ruby Is available on Github

We are pleased to announce the availability of the Ruby bindings for pocketsphinx created by Howard Wilson.


pocketsphinx-ruby is a high-level Ruby wrapper for the pocketsphinx C API. It uses the Ruby Foreign Function Interface (FFI) to directly load and call functions in libpocketsphinx, as well as libsphinxad for recoding live audio using a number of different audio backends.

The goal of the project is to make it as easy as possible for the Ruby community to experiment with speech recognition, in particular for use in grammar-based command and control applications. Setting up a real time recognizer is as simple as:

configuration = Pocketsphinx::Configuration::Grammar.new do
  sentence "Go forward ten meters"
  sentence "Go backward ten meters"
end

Pocketsphinx::LiveSpeechRecognizer.new(configuration).recognize do |speech|
  puts speech
end

This library supports Ruby MRI 1.9.3+, JRuby, and Rubinius. It depends on the current development versions of Pocketsphinx and Sphinxbase - there are Homebrew recipes available for a quick start on OSX.

LIUM releases TEDLIUM corpus version 2

LIUM team, the main CMUSphinx contributor, has announced today the release of TEDLIUM corpus version2, an amazing database prepared from transcribed TED talks

http://www-lium.univ-lemans.fr/en/content/ted-lium-corpus

A details on this update could be found in corresponding publication:

A. Rousseau, P. Deléglise, and Y. Estève, "Enhancing the TED-LIUM Corpus with Selected Data for Language Modeling and More TED Talks", in Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), May 2014.

This database of 200 hours of speech allows you to build a speech recognition system with very good performance with open source toolkits like Kaldi or CMUSphinx. A Kaldi recipe for TEDLIUM v1, is available in the repository and we hope that the update to TEDLIUM v2 will be available soon.

Modern technology like automatic alignment of transcribed audio made it easy to create very competitive databases, so it's easy to predict that the size of the available databases will quickly grow to thousands of hours and thus we will see a very significant improvement in accuracy of the open source recognition. The problem comes here that quite powerful training clusters will be required to work with such databases, it is not possible to train model on a single server in acceptable amount of time.

CMUSphinx is available on Windows Phone Platform

Microsoft traditionally has very good speech recognition technology. Recently announced speech recognition assistant Cortana is one of the best available assistant. However, it might lack support for your native language or just behave not the way you expect (hey, Siri also still doesn't support many languages).

Thanks to a wonderful work by Toine de Boer you can now enjoy Pocketsphinx on Windows phone platform. It is as straightforward as on Android, you can just download the project from our github http://github.com/cmusphinx/pocketsphinx-wp-demo, import it into your Visual Studio and run on the phone. You can enjoy all the features of CMUSphinx on Windows phone: continuous hands-free operation, switchable grammars, support for custom acoustic and language models. There is no need to wait for the speech recognition input in the game. We hope this opens the possibilities for new great applications.

The demo includes continuous listening for the keyphrase "oh mighty computer" and once keyphrase is detected it switches to grammar mode to let you input some information. Let us know how it works.

Python decoding example

Python programming language is getting amazing popularity recently due to the elegance of the language, wide range of tools for scientific computing including scipy and NLTK and the immediacy of a "scripting" style language. We often get request to explain how to decode with pocketsphinx and Python.

Another interesting activity going around CMUSphinx is an updated acoustic model for German language. A frequent updates are posted on Voxforge website by Guenter, please check his new very much improved German models here: http://goofy.zamia.org/voxforge/de/. With the new improvements like audio aligner tool you can build a very accurate model for almost any language in a week or so.

To summarize these new features, one of our users, Matthias provided a nice tutorial on how to start with Pocketsphinx and Python and German models. With the new SWIG-based API we increased support for decoder features available in Python, now you can do from Python almost the same things you can do from C. If you are interested, please check his blog post here:

https://mattze96.safe-ws.de/blog/?p=640

If you have issues with Python API or want to help with your language, let us know.